
Gödel’s Incompleteness Theorems

Version 4.3

Richard Baron

2 October 2016

1



Contents

1 Introduction 5
1.1 Summary . . . . . . . . . . . . . . . . . . . 5
1.2 Availability and licence . . . . . . . . . . . . 6
1.3 Comments, changes and acknowledgements . 6

2 Kurt Gödel 7
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1 Introduction

This paper grew out of a talk for non-specialist audiences.
It does not use logical symbols. Instead, it offers ordinary
language versions of statements that would be put in
symbolic terms for specialist audiences. In section 13 there
are recommendations for further reading, in which the
presentation is more technical.

1.1 Summary

We start with a note on Kurt Gödel and on the context
within which he worked. We then have some scene-setting
in which we set out what we mean by symbols, formulae,
sentences, numbers and proofs. After that, we can define
formal systems. The theorems that concern us are about
these systems.

After that, we start to look at Gödel’s first incompleteness
theorem. This theorem is the main topic of the paper. It tells
us that there is an inevitable limit on the power of certain
systems of logic to prove things. We start by outlining what
the theorem says, and then set out the conditions a system
must meet if we are to show that it is limited in what it can
prove. After that, we show how to get to a special sentence
that will lead us to the theorem and how it does lead to the
theorem.

We then turn to the second incompleteness theorem. It tells
us that there are powerful and useful systems which cannot
prove their own consistency. We set out what the theorem
says, and then how to get to it.

Finally, we comment on the significance of the two
theorems.
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1.2 Availability and licence

This paper is available at the following address:

http://www.rbphilo.com/baron richard incompleteness.pdf

The author’s home page is at the following address:

http://www.rbphilo.com/

There is a link to this paper from the “Course Notes” page
on that website.

This paper is published under the Creative Commons
Attribution-NoDerivatives 4.0 International Licence (CC
BY-ND 4.0). To view a copy of the licence, please visit:

http://creativecommons.org/licenses/by-nd/4.0/legalcode

1.3 Comments, changes and
acknowledgements

This paper is intended to help people who want to learn
about the theorems. Comments are welcome. Please send
them to the address given at:

http://www.rbphilo.com/contact.html

Any revised version will have a new version number and a
new date. In addition, changes will be noted in the list of
changes in section 14 at the end of the paper.

The author would like to thank Anna Hughes and Kieran
Quill for their very helpful comments on a draft.
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2 Kurt Gödel

2.1 Life

Kurt Gödel was born in 1906 in Brno, then in the Austro-
Hungarian Empire but now in the Czech Republic. He went
to the University of Vienna to study physics, but he also
worked on the foundations of mathematics and on related
philosophical issues. His doctorate, on logic, was awarded
in 1929.

In 1931, he published the two incompleteness theorems that
will concern us. During the 1930s, he made visits to the
Institute for Advanced Study at Princeton. He was back
in Austria in 1939, but he left after the Second World
War started and travelled back to Princeton. He published
further important results in logic in the 1940s. He regularly
conversed with Einstein, who was also at Princeton, and
he discovered a new solution to Einstein’s field equations,
which give the possible shapes of universes. He remained at
Princeton for the rest of his life, and died in 1978.

His work as a logician is hugely important. He would have
to be included in any list of the top six logicians of all time.
And he would be a very strong candidate to be placed in
the top three, alongside Aristotle (384 – 322 BC), whose
works provided the foundations of logic as a systematic
discipline, and Gottlob Frege (1848 – 1925), who was the
chief architect of the modern form of logic.

2.2 The mathematical context

In various parts of mathematics we see how we can start
with some basic principles, and then establish sophisticated
conclusions that follow inevitably from those principles.
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For example, we can start with some basic principles of
geometry, Euclid’s axioms, and prove Pythagoras’ theorem.

It is an obvious aspiration to extend this work to cover
mathematics as a whole. It would be good to identify some
basic principles, principles that it would seem impossible to
deny, and then to show that all of mathematics could be
built on that firm foundation.

The most ambitious attempt in that direction was pub-
lished while Gödel was still a child. In 1910, 1912 and
1913, Bertrand Russell (1872 – 1970) and Alfred North
Whitehead (1861 – 1947) published the three volumes of
Principia Mathematica. But while this work accomplished
a great deal, and showed that at the very least, large parts
of mathematics could be founded on some basic principles,
it was clear that not everything that needed to be done had
been done.

In 1921, while Gödel was in his teens, David Hilbert (1862
– 1943) set out what he thought still remained to be done.
He proposed a programme to set out foundations for the
whole of mathematics, such that we would have no fear that
the foundations might be in the least bit shaky.1 On the
one hand Hilbert wanted everything covered, and Russell
and Whitehead had not done that much. On the other
hand, Hilbert had a specific concern about the firmness of
whatever foundations were put in place. While the concept
of infinity had been in use since ancient times, the rigorous
treatment of infinite quantities was quite new, and it was
not yet clear whether their use might take mathematics into
territory in which there was a risk of error.

1 Hilbert had been concerned about such issues since the start of
the century. He was not initially motivated by the work of Russell and
Whitehead. But it was in some talks in Hamburg, in July 1921, that
he set out the definitive version of his programme.
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It was in this exciting context that Gödel set to work. As we
shall see in section 12.1, his two incompleteness theorems
presented a major challenge to Hilbert’s programme. The
programme cannot be carried out in full. There must be
gaps, and we cannot be completely certain of the firmness
of the foundations.

3 Symbols, formulae, sentences

and numbers

We are going to be concerned with formal systems –
we shall just say systems for short. Within a system,
we use symbols to write down formulae. Some of the
formulae will be sentences. Quite a lot of the formulae will
involve numbers. And there will be proofs of sentences. In
this section we shall explain what we mean by symbols,
formulae, sentences and numbers. In section 4 we shall
introduce the idea of a proof. In section 5 we shall explain
what counts as a system, and we shall be precise about
what counts as a proof.

3.1 Symbols

We write things down using symbols. Here are some
examples of symbols:

∙ Mathematical symbols like 5, + and =.

∙ Ordinary letters when they are used on their own,
rather than in words. Examples are 𝑥 and 𝑦 in “𝑦 =
2𝑥”.

∙ Ordinary words.
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If we look at the systems that logicians use, we find that
they do not count ordinary words as symbols. Logicians
replace the words that they might need with special
symbols, and they do not use other words. This is partly
because they do not want any of the ambiguity of ordinary
language to creep into their systems, and partly because
they want to be absolutely clear about which symbols
can be used in each system. But we shall give examples
in ordinary language, so we shall treat ordinary words as
symbols.

3.2 Formulae

We put symbols together in strings, by writing one symbol
after another along a line. Not just any old string is
acceptable. Most random strings of symbols are gibberish.
We are really interested in strings that comply with
grammatical rules about what may be written.

A string that complies with the rules is officially called a
well-formed formula, or a wff. But we shall simply call such
a string a formula.

Each formula is written on its own line. Here are some
examples of formulae:

∙ Yeats was a poet.

∙ 31 is a prime number.

∙ 𝑥 is a prime number.

Formulae can be very long, but we want to maintain the
principle that each formula occupies only one line. If we
want to think about writing down a long formula, we simply
imagine that we have a very wide sheet of paper. And if any
formula in this paper strays onto a second line, the fact that
it is really a single-line formula will be shown by the fact
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that there will be a small gap below it, like a break between
paragraphs.

We often display sequences of formulae, one after another.
We do this when we set out a proof. We put each formula
on a separate line. We also quite often number the lines,
just to make it easy to refer to lines in the proof, but a line
number does not become part of the formula on that line.

Here is an example, a proof that the law forbids smoking in
the dining room of a restaurant. Once we have been given
lines 1 to 4, we can work out that lines 5 to 7 follow from
them. Line 5 follows from lines 2 and 3, line 6 follows from
lines 4 and 5, and line 7 follows from lines 1 and 6.

1. The law forbids smoking in enclosed spaces that are
open to the public.

2. The law defines rooms in buildings as enclosed spaces.

3. A dining room in a restaurant is a room in a building.

4. A dining room in a restaurant is open to the public.

5. A dining room in a restaurant is an enclosed space.

6. A dining room in a restaurant is an enclosed space
that is open to the public.

7. The law forbids smoking in the dining room of a
restaurant.

11



3.3 Sentences

3.3.1 Formulae that are sentences

A formula may qualify as a sentence. A sentence is a
formula that makes a definite statement. It may be written
in ordinary language, or it may be written in mathematical
symbols. So the following are sentences:

∙ Masha bakes pies.

∙ 11 + 6 = 17

∙ 2 + 2 = 5

∙ Not (2 + 2 = 5)

The third one of these, “2 + 2 = 5”, is a perfectly good
sentence. But it is not often useful.

3.3.2 Negations of sentences

The last example above, “Not (2 + 2 = 5)”, is the opposite
of the third one. It denies that 2 + 2 = 5. Sticking the
word “Not” on the front of a sentence is the way in which
we say the opposite of what the sentence on its own would
say. The resulting sentence is called the negation of the
sentence with which we started.

We shall always write “Not” with a capital letter when it
plays this role, just to remind us of what it is doing. We
shall also wrap the original sentence in brackets before we
stick “Not” on the front, so as to make it clear exactly what
is covered by the “Not”. We shall do this even when we give
a sentence a one-letter name, like G, so we shall write the
negation as “Not(G)”. When a sentence is given a one-letter
name, we shall eliminate the space after the “Not”, just to
emphasize the link between the “Not” and the sentence.
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The negation is, however, not the extreme opposite. It is
just the other option. If we start with “John is tall”, and
we form the sentence “Not (John is tall)”, this does not
necessarily mean that John is short. He might be short, or
he might be of middling height. We have only denied that
he is tall.

3.3.3 Formulae that are not sentences

A formula that does not make a definite statement is not a
sentence. For example:

∙ 𝑥 is greater than 1,000.

∙ 𝑧 is a philosopher.

These do not make definite statements. “𝑥” stands for some
number or other, but we are not told which number. We are
invited to select a number. The result may be correct (if, for
example, we select the number 2,345), or it may be incorrect
(if, for example, we select the number 738). “𝑧” stands for
some person or other, but we are not told which person. We
are invited to select a person. The result will be correct if
the person we select is a philosopher, and incorrect if he or
she is not a philosopher.

We can form negations of formulae that are not sentences,
in the same way that we form negations of sentences. We
simply put “Not” on the front of a formula. “Not (𝑧 is a
philosopher)” again invites us to select a person. The result
will be correct if the person we select is not a philosopher,
and incorrect if he or she is a philosopher.
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3.4 Numbers

We are going to mention numbers quite a lot. We shall
always mean the numbers 0, 1, 2, 3, and so on. We shall
not mean fractions, negative numbers, infinite numbers or
anything else.

4 Proofs of sentences

Some sentences have proofs. The rough idea of a proof may
be familiar from school mathematics or from court cases. In
school, you may start from some equations and prove that
one value is twice another; or you may start from some
basic ideas about geometry and prove that the angles of a
triangle add up to 180 degrees. In court, a lawyer may start
from some sections of a law and prove that some type of
conduct is not allowed.

To prove a sentence, we start from some sentences we
are already given. They may be equations, or ideas about
geometry. Or they may be sentences like the first four
sentences in our example in section 3.2 (“The law forbids
smoking in enclosed spaces that are open to the public”, and
so on). These starting points are called premises. Then we
work through a sequence of sentences to reach the sentence
we want to prove. This sentence is called the conclusion.
It might be something mathematical, or it might be a
conclusion like “The law forbids smoking in the dining room
of a restaurant”. All of the steps through the sequence must
be strong ones, so as to convince us that the conclusion does
indeed follow from the premises.

We are only going to be interested in proving mathematical
sentences. This will allow us to be precise about what counts
as a proof. We shall be precise in section 5.2.
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5 Systems

5.1 Systems are boxes of tools

A system is a box of tools for writing and proving
sentences. There are four types of tool in the box.

Tools of the first two types are there to help us write
sentences. They are as follows:

∙ There is a collection of symbols we can use, such as
letters, numbers, words, the + sign, the = sign and
brackets.

∙ There are tools to help us to combine symbols. There
are some rules that tell us which strings of symbols
count as formulae. These are the only strings we are
allowed to write. There are also rules that tell us which
formulae count as sentences, and how we can generate
new formulae and sentences from ones we already
have. For example, there may be a rule that if we have
two sentences, we can always create a new sentence by
joining them together with the word “and”. That rule
would mean that if the rules allowed us to write “The
bear wants to sit down”, and the rules also allowed us
to write “The bear wants to eat one of Masha’s pies”,
we would be allowed to write “The bear wants to sit
down and the bear wants to eat one of Masha’s pies”.
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Tools of the third and fourth types are there to help us
prove sentences. They are as follows:

∙ There are some sentences called axioms, which we
are given for free. We do not need to prove them, so
we can always use them as premises in arguments.

∙ There are some rules of inference that tell us how
we can move step by step through a proof, by going
from formulae we already have in the proof to new
ones.

For example, we can use the following axioms for the
numbers, 0, 1, 2, 3, and so on:

1. There is a number, which is called 0.

2. Each number has a successor, the number that comes
next. (1 is the successor of 0, 2 is the successor of 1,
and so on.)

3. 0 is not the successor of any number. (This means
that 0 is the first number in the chain of numbers.)

4. If any two numbers have the same successor, they
are the same number. (This means that the chain of
numbers cannot loop back on itself. We cannot go 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 5, because then 9 and 4 would
have the same successor, 5, so they would have to be
the same number.)

5. Suppose that 0 has a property, and suppose that if any
number has a property, so does its successor. Then all
numbers have it. (What this says is that if we can
find a property that applies at the start, and that
always gets passed up the chain, every number has
the property. It is actually a pattern for an axiom.
There are infinitely many specific axioms, one for each
specific property.)
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What about the rules of inference? They tell us what
moves we can make in order to work our way forward from
formulae we already have to new formulae, along a sequence
that will eventually get us to a sentence we would like to
prove. We shall only look at one rule of inference, just to give
us the idea. This is the most important rule of inference,
and we find it in most systems. It is called modus ponens:

∙ If we already have a sentence, P,

∙ and we already have the sentence, If P, then Q,

∙ we can move on to the sentence, Q.

For example:

∙ If we already have “12 is an even number”,

∙ and we already have “If 12 is an even number, then
12× 3 is an even number”,

∙ we can move on to “12× 3 is an even number”.

That is our complete box of tools. We shall speak of writing
formulae, and of giving proofs, within a system. This will
mean using only the tools that the system has, and writing
formulae and giving proofs which we shall take to belong
to that system. This will be so, even if identical formulae
could be written, and identical proofs could be given, in
other systems.

There can be different boxes of tools. Boxes may differ in
respect of their symbols, their rules about what we can
write, their axioms, or their rules of inference. Each box
will be a different system. One analogy is different systems
for proving things in court, in England and in France. The
available symbols and rules for combining those symbols
are different because English and French have different
vocabularies and different grammars. And the available
starting points in argument that lawyers can use without

17



needing to justify them are different because those starting
points are the provisions of the laws of the two countries,
and those laws are different.

5.2 Proofs within systems

Once we have our tools, we can prove lots of sentences.

For example, once we have all the axioms for numbers we
gave above, along with some other axioms that are not
specific to numbers but are standard for the appropriate
type of system, we can use the axioms as premises. Then
we can give proofs of sentences like these:

∙ 5 + 7 = 12

∙ Not (3 + 4 = 8)

Note the second example. It is important that we can prove
some negations, that is, some sentences which start with
“Not”, as well as other sentences which are not negations.

Now we can be precise about what counts as a proof of a
sentence. It is a sequence of formulae, where each formula
is:

1. an axiom; or

2. something that our rules of inference allow us to move
on to, given the earlier formulae in the sequence,

and the sequence ends with the sentence we want to prove.

We are going to get very interested in which sentences
have proofs, and which ones do not have proofs, in a given
system. We shall speak of a system allowing us to prove a
sentence. This will mean that there is a proof of the sentence
within the system.
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If there is no proof within a given system, that will not mean
that there is no proof anywhere. There might be a proof in
another system. One system may, for example, be able to
prove more than another one because it has more axioms.
But we are going to be concerned with what particular
systems can do. This means that we should not speak of
a sentence being provable in general. We should only speak
of its being provable within some particular system.

6 The first incompleteness

theorem

We like to think that if a system allows us to write a
mathematical sentence, the same system should also allow
us to prove it or to prove its negation (but not both of
them). So if we are faced with these two:

∙ The sum of any two even numbers is an even number;

∙ Not (The sum of any two even numbers is an even
number),

we should be able to prove the first one – and indeed we
can, so long as the system has enough resources to generate
the proof. We also find that we cannot prove the second
one.

Likewise, if we are faced with these two:

∙ 22 is greater than 45;

∙ Not (22 is greater than 45),

we should be able to prove the second one – and indeed we
can, so long as the system has enough resources to generate
the proof. We also find that we cannot prove the first one.

19



It would be a bit worrying if there were a mathematical
sentence, such that a system allowed us to write it but did
not allow us to prove it, and did not allow us to prove its
negation either. What should we do? We could not accept
both the sentence and its negation, because they would
clash. We would feel very uncomfortable accepting neither
of them, because that would mean not knowing the answer
to a mathematical question, and we tend to think that all
mathematical questions should have answers. But if we were
to accept just one of them, we would have to do so without
the reassurance of a proof.

Gödel’s first incompleteness theorem tells us that we will
routinely be faced with sentences just like that. To be
precise, it says the following.

Suppose we have a system that meets the following
conditions:

1. The system is consistent.

2. We can identify formulae, sentences, axioms and
proofs.

3. The system is powerful.

(We shall explain what these conditions mean in section 7.)

If the conditions are all satisfied, there will be a trouble-
some sentence, which we shall call G, with the following
properties:

1. We can write G within the system.

2. The system does not allow us to prove G.

3. The system does not allow us to prove Not(G).

How do we get to G? We have to find a route to a sentence
which will claim that it has no proof. This sentence will
be our G, so G will talk about itself. (The lack of a proof
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will be the lack of a proof within the relevant system. There
may be a proof in some other system that what G says is
correct.)

As we shall see in section 9, we can get to a sentence like
that. And in section 10, we shall see how that sentence gets
us to the first incompleteness theorem. If we work through
all that, we shall get a very good idea of what the theorem
says. Then we shall be able to grasp its significance.

One thing we can explain now is our use of the word
“incompleteness”. The concept is actually the concept of
negation incompleteness. A system is negation incomplete
if there is some sentence which the system allows us to write,
but which is such that the system does not allow us to prove
it, and does not allow us to prove its negation either. (There
might be just one sentence like that, or there might be
several of them.) A system is negation complete if for every
sentence which it allows us to write, it allows us to prove
either the sentence or its negation. We say “incomplete”
and “complete” as short forms of “negation incomplete”
and “negation complete”.

(Logicians also use the words “complete” and “incomplete”
in another sense. In this other sense, a system is complete if
there are proofs of all of the sentences that have to be true.
Otherwise, it is incomplete. The context usually makes it
clear which sense is meant. We are only going to discuss
negation completeness and incompleteness. We shall not use
the other sense.)

7 The conditions on the system

In this section, we shall set out the conditions that a system
needs to meet in order for us to prove that the system is
incomplete. We should note at the outset that they are
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not arbitrary conditions, rigged so as to allow us to prove
incompleteness. They are conditions that tend to make
systems useful. It would not be at all surprising to find
that a system in use met these conditions.

7.1 The system is consistent

A system is consistent so long as there is no sentence S,
such that we could use the system to give a proof of S and
a proof of Not(S). If there is a proof of some sentence S,
and a proof of Not(S), that means the system contains a
contradiction. Then we say that the system is inconsistent.

We shall illustrate the notion of a contradiction by consid-
ering an example. We shall then set out why consistency
matters.

Suppose that a system allowed us to prove both of the
following sentences:

∙ Every even number apart from 2 is the sum of two
prime numbers.

∙ Not (Every even number apart from 2 is the sum of
two prime numbers).

The first one is called Goldbach’s conjecture. It looks
plausible. 4 is 2 + 2, 6 is 3 + 3, 8 is 3 + 5, 10 is 3 + 7, and
so on. It has been checked up into the billions of billions,
but there is no proof yet. The second one is the negation of
Goldbach’s conjecture.

What would happen if the system that we normally used
for numbers allowed us to prove both of these sentences?

We would panic. We would have a contradiction, and that is
disastrous for any formal system. Apart from anything else,
if a system allows even one contradiction, then we can use
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the system to prove any sentence at all which the system
allows us to write. We would end up proving that 2+2 = 5.
So inconsistent systems are not much use.

Inconsistent systems cannot be incomplete. Incompleteness
arises when a system allows us to write a sentence, but
not to prove either it or its negation. In an inconsistent
system, we would be able to prove both the sentence and
its negation, because the system could be used to prove
anything that it allowed us to write.

7.1.1 Consistency and 𝜔-consistency

There is a little twist here. We are taking the route
to the first incompleteness theorem that Gödel originally
used, because that makes it easy to understand the special
sentence G. If we take that route, consistency is not quite
enough. We actually need something a bit stronger, called
𝜔-consistency.2

There are two reasons why this is not a major issue for us,
given that we are taking a fairly informal approach. The
first reason is that the basic idea is the same: 𝜔-consistency,
like consistency, amounts to not being able to prove some
dubious combinations of sentences. The second reason is
that there is another route to the first incompleteness
theorem, formulated by John Barkley Rosser (1907 – 1989).
He published his route in 1936. It gets us there while only
assuming consistency, and not requiring 𝜔-consistency. The
catch is that the sentence Rosser used to do the work that
Gödel’s sentence G does, is more complicated. It is harder
to see how Rosser’s sentence does the job.

2 The character 𝜔 is the lower-case version of the Greek letter
Omega, a long o. In English it is pronounced “omega”, not “o”.
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Having said that, here is a note on 𝜔-consistency.

Suppose that a system is concerned with a collection of
objects, for example, all the numbers 0, 1, 2, 3, and so on.
And suppose that for each object, we can prove within the
system that it lacks some particular property. Then for the
system to be 𝜔-consistent, we must not be able to prove
within the system that there exists an object which has the
property.

The systems that normally interest us are all 𝜔-consistent,
so far as we can tell. This makes it hard to give a
realistic mathematical example of its absence, that is, of
𝜔-inconsistency, so as to illustrate the kind of dubious
combination of provable sentences that we want to avoid.
So here is an (unrealistic) real-world example.

Suppose that we have genetically modified a strain of apple
trees, so that the modified trees will never produce green
apples, but only red ones. Then we plant an infinite number
of the modified trees.

By inspecting the genome of any tree, we could prove that
it would lack the property of producing green apples.

If we could also prove that some tree or other (we could not
say which one) would produce green apples, we would have
a logical problem. There would be 𝜔-inconsistency. But so
long as we could not prove that, there would be no problem.
There would be the nice safe 𝜔-consistency.

Finally, we say that 𝜔-consistency is stronger than consist-
ency because we first check to see whether systems qualify
as consistent. Then we look among the consistent systems
to pick out the 𝜔-consistent ones. It is only consistent
systems that can qualify as 𝜔-consistent. So if a system
is 𝜔-consistent, it is also consistent. But it is possible for a
system to be consistent without being 𝜔-consistent. Looked
at another way, if a system is inconsistent, it must also be
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𝜔-inconsistent. But a system can be 𝜔-inconsistent, while
still being consistent.

7.2 We can identify formulae, sentences,
axioms and proofs

It must be possible to work out the status of a string of
symbols, or of a sequence of strings of symbols. We must
always be able to answer the questions that we cover in this
section.

7.2.1 Is a string of symbols a formula, and is it a
sentence?

There must be a mechanical procedure that will do both of
the following, and will do so within a finite number of steps:

∙ If we apply the procedure to any finite string of
symbols that is a formula, it will work out that the
string is a formula. If the string is not merely a
formula, but a sentence, it will work that out too.
And if the string is a formula which is not a sentence,
it will work out that the string is not a sentence.

∙ If we apply the procedure to any finite string of
symbols that is not a formula, it will work out that
the string is not a formula.

Normally, this is not a problem. But we can imagine that it
might be a problem, for example if there were some lack of
clarity in the rules that set out what counted as a formula.
So we need to record the condition.

A mechanical procedure is one that we specify in advance, in
such detail that once we have specified it, it can be applied
simply by following the instructions. There must not be
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any need for someone applying the procedure to exercise
judgement, or even common sense. And the procedure
must not be modified as work on a string progresses. (The
procedure can include conditional instructions within it,
like “If the string of symbols starts with a ‘Not’, do X,
but if there is no ‘Not’ at the start, do Y instead”. But all
of those conditional instructions must be written into the
procedure before anyone starts to use it.) This definition
of a mechanical procedure applies to the two following
conditions as well.

This condition, like the two following ones, also refers to
reaching a conclusion in a finite number of steps. We need to
understand what steps are, and we also need to understand
just how generous the limit is.

We can grasp the idea of a step by thinking of a particular
method we might use to check whether a given string
was a formula. We might look at the rules for building
up formulae, and see how they allowed us to build up
complicated formulae from simple ones. Then we could work
out a way to generate formulae in some order, starting with
the simplest ones. Then we could implement this method,
and start to generate formulae. Each time we generated a
new formula, we could compare it with the string that was
in front of us. If there was a match, the string would be a
formula. If we could tell when we had gone so far through
the formulae that we must have passed the point where the
string might have been, then it would not be a formula.

We can see what the steps would be in this sort of
procedure. Each act of adding to a formula to generate
a new one would be a step. For example, if we already
had a formula, creating its negation by putting “Not” on
the front of it would be a step. Or if we already had two
formulae, combining them by putting “and” in between
them to generate a longer formula would be a step. In the
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comparison, comparing each formula with the string under
consideration would be a step. Deciding “No match, try the
next formula” would be a step. And so on.

We only require that the number of steps needed to work
out whether a string is a formula, or whether it is a sentence,
should be finite. It could be a hundred steps, or it could be
trillions of trillions of steps. It might take us longer than
the remaining life of the Universe to get through them all,
but that would not matter. Logicians do not worry about
practical details like that. All that matters is that whatever
the string, the number of steps should be finite. (All of this
also applies to the mentions of a finite number of steps in
the next two conditions. The number of steps to determine
whether a sentence is an axiom, or whether a sequence of
formulae is a proof, must be finite whatever the sentence,
or whatever the sequence of formulae.)

7.2.2 Is a sentence an axiom?

There must be a mechanical procedure that will do both of
the following, and will do so within a finite number of steps:

∙ If we apply the procedure to any sentence that is an
axiom, it will work out that the sentence is an axiom.

∙ If we apply the procedure to any sentence that is not
an axiom, it will work out that the sentence is not an
axiom.

Again, this is not normally a problem. If we have a finite
number of axioms in the box of tools we just go through a
list of them, and compare each axiom on the list with the
sentence we have in front of us. If it matches one of the
axioms on the list, we will notice this and say that it is an
axiom. If we get to the end of the list of axioms without
finding a match, we will say that it is not an axiom.
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But it can be a problem. There are systems with infinite
numbers of axioms. In fact, some of the systems that we
find interesting, including the standard system to handle
the arithmetic of the numbers 0, 1, 2, 3, and so on, do have
infinite numbers of axioms. In such a system, if we took a
sentence that was in fact an axiom, and started to work
through the axioms systematically, we should eventually
discover that it was an axiom. But if it was not an axiom,
we might go on for ever, always hoping that our sentence
would turn up among the axioms but never discovering that
it was not an axiom.

We might not get caught in this trap. If for example there
was a list that arranged the axioms in some order, and we
knew that if our sentence was an axiom, it would have to
come before a certain point in the order, we could stop
once we had reached that point. Alternatively, if there were
a finite number of patterns of axiom, so that any sentence
which followed one of those patterns was an axiom but no
other sentences were axioms, we might be able to check
whether the pattern of the sentence in front of us matched
one of the axiom patterns. And in fact, we do not get caught
in the trap when we use the standard system for arithmetic.

However, there are systems in which we would be caught
and would not have one of these helpful escapes from the
trap. So we need to record the condition that we can always
work out, in a finite number of steps, whether any given
sentence is an axiom.
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7.2.3 Is a sequence of formulae a proof?

There must be a mechanical procedure that will do both of
the following, and will do so within a finite number of steps:

∙ If we apply the procedure to any finite sequence of
formulae that is a proof, it will work out that the
sequence is a proof.

∙ If we apply the procedure to any finite sequence of
formulae that is not a proof, it will work out that the
sequence is not a proof.

This should not be a problem. We have already laid down
the condition that we can tell whether any given sentence
is an axiom, so we can go through any purported proof and
pick out all the axioms. Then we can see whether all the
other formulae are ones that can be made to follow from
the axioms in the proof by using the rules of inference.

So long as we have a finite number of rules of inference, we
can start from the beginning of the sequence of formulae and
try all the possible ways to derive each non-axiom formula
in turn from what precedes it in the sequence of formulae.
If we find a way that works, then the formula can be made
to follow. If we try all of the ways and find that none of
them works, the formula cannot be made to follow and the
sequence of formulae is not a proof. If we go through all
of the non-axiom formulae in this way, and find that each
one can be made to follow from what precedes it, then the
sequence of formulae is a proof. We can imagine difficulties
if there were an infinite number of rules of inference to try,
but that would make for a very odd system.

Given that there should be no difficulty in working out
whether a sequence of formulae is a proof, it might seem odd
to bother specifying this condition. But there is a reason for
doing so. A system will itself need to be able to say whether
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there is any sequence of formulae that is a proof of a given
sentence. So we need to be confident that picking out proofs
is a manageable task, one that could be performed within
the system. For the same reason, we need to be confident
that it is a manageable task to pick out the things that go
into proofs, that is, formulae, sentences and axioms.

7.3 The system is powerful

A system is powerful if it can handle the arithmetic of the
numbers 0, 1, 2, 3 and so on. There are systems without
that level of power, and they do allow us to do some
very useful mathematics. Some of those systems do not
suffer from incompleteness. But we shall concentrate on
systems that do allow us to count in whole numbers, say
when computations have whole-number answers, and useful
things like that.

We shall first make the notion of a powerful system precise,
and then explain why we are going to rely on power when
we establish incompleteness.

7.3.1 The notion of a powerful system

A system is powerful if:

∙ we can apply it to the arithmetic of the numbers 0, 1,
2, 3, and so on, with addition and multiplication; and

∙ when we do so, it can prove the answers to a wide
range of questions. It must be able to prove that the
answer to “What is the result of 7 × 9?” is “63”,
that the answer to “What is the result of working
out whether 317 is a prime number?” is “Yes, it is
prime”, and so on.
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“A wide range of questions” is a vague phrase. The official
definition is as follows.

We can ask questions that demand the answers to com-
putations. (The question “What is the result of 7 × 9?”
obviously demands the answer to a computation. This is
not so obvious with the question “What is the result of
working out whether 317 is a prime number?”, but actually,
it does demand the answer to a computation. It asks us to
calculate whether the answer is “Yes, it is prime” or “No,
it is not prime”.)

We are allowed to build up the computations that give us
our questions in the following ways:

∙ We can combine three basic operations: going from a
number to zero, adding one to a number, and picking
a number out from a list.

∙ We can combine these operations by applying one of
them, and then applying another one (or the same
one again) to the result, as many times as we like.

∙ We can also combine them by having a rule that tells
us the result of a computation on 0, and then tells
us how to work out the result for a computation on
any greater number by looking at the result for the
previous number. So if we want to know the result for
a computation on 3, we look at the result for 2. To
discover that, we look at the result for 1. To discover
that, we look at the result for 0. We are given that,
so we can work back up the chain and find the result
for 1, then the result for 2, then the result for 3.

This may not sound like much. But these three basic
operations, and two ways to combine them, actually
make it possible to reach a remarkably large amount of
mathematics. And they allow us to define powerful systems,
as follows:
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∙ Take all of the computations that can be built up
using these operations and ways of combining them.

∙ Take all of the questions that demand answers to
those computations.

∙ A system is powerful if, and only if, it can prove the
answers to all of those questions.

7.3.2 Why power matters

It might seem odd that we can only establish incompleteness
for powerful systems. We might expect weak systems, rather
than powerful ones, to find it difficult to prove things. We
shall now explain why it is not odd. We shall first consider
what systems allow us to write, and then what they have
the power to prove.

Incompleteness arises when a system allows us to write a
sentence, but does not allow us to prove it or to prove its
negation. If we want to establish incompleteness, we first
have to show that a system has the resources to write a
suitably troublesome sentence.

We shall start by noting one way in which systems can give
us great scope to write things. They can do so by allowing
us to make generalizations that range across all numbers.
Here are examples of generalizations of this sort:

∙ All prime numbers greater than 2 are odd.

∙ If any two numbers have the same successor, they are
the same number. (This was the fourth one of our
axioms for handling numbers, as listed in section 5.1.
Note that it is a generalization across all numbers,
because it is about any two numbers.)
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The ability to make generalizations is immensely useful.
Imagine how much more laborious life would be if we could
not write the first of these examples, and had to write “3 is
odd, 5 is odd, 7 is odd, 11 is odd, ... ”.

This ability is also going to matter when we come to
write our troublesome sentence G. We are going to give
identification numbers to proofs, and G will say that no
number is the identification number of a proof of itself. So
G will make a general claim about all numbers.

Lastly, the ability to make generalizations can allow a
system to prove those answers to questions that it needs
to be able to prove, in order for it to qualify as powerful.

The ability to make generalizations can lead to incomplete-
ness. But we defined powerful systems as systems with lots
of power to prove things. Why does a system need lots of
power, in order for us to show that it has limited power to
prove things?

To see why we rely on power to demonstrate incomplete-
ness, we must first make a connection with the mechanical
procedures that we mentioned in section 7.2. It turns
out that if mechanical procedures are available, then
computations of answers to questions which ask “Is this
a formula?”, “Is this a sentence?”, “Is this an axiom?” or
“Is this a proof?” are all computations of the types that we
specified when defining powerful systems. We can build up
the computations that are needed to answer those questions
by using the three basic operations and two ways to combine
them that we specified in section 7.3.1. Computations which
have been built up like that can work every time, whether
the answers are “Yes” or “No”. This means that if a system
is powerful, it can prove the answers that would come from
all applications of such mechanical procedures.
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Now recall that a proof is a proof of whatever sentence
comes at the end of the sequence of formulae. This means
that if a sequence of formulae is a proof, it is obvious what
the sequence proves. So if a system can prove the answer to
the question “Is sequence U a proof?”, it can also prove the
answer to the question “Is sequence U a proof of sentence
V?”. It only needs to check whether the sequence ends with
sentence V.

We are going to consider what would happen if there
were a proof of G, or a proof of Not(G). We shall show
that in either case, we would get a contradiction. But a
contradiction only arises when a system can itself prove
both a sentence and its negation. We shall assume that
there is a proof of G. Then we shall invoke the power of the
system to prove the answer to each question of the form “Is
sequence U a proof of sentence V?”, to show that on our
assumption, the system could itself prove that there was a
proof of G. But the claim that there is a proof of G will
turn out to contradict what G itself says. We shall then run
through a similar argument for the assumption that there
is a proof of Not(G), and we shall again invoke the power
of the system to make sure that we get our contradiction
within the system. We shall derive our contradictions in
sections 10.2.1 and 10.2.2.
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8 Sentences that talk about

sentences

8.1 The problem

When we first mentioned our sentence G, we noted that
it will talk about itself by claiming that it has no proof.
(Remember that the lack of a proof will be the lack of a
proof within the relevant system. There may be a proof in
some other system that what G says is correct.) So we need
sentences to be able to talk about sentences. More generally,
we are going to need formulae to talk about formulae.
(Remember that sentences are formulae of a certain type.)

We can manage this in ordinary language. We can write
things like:

∙ The sentence “Though this be madness, yet there is
method in’t” was written by Shakespeare.

But many systems lack the symbols that we would need
to do this sort of thing. In particular they lack ways to
name sentences directly, or to put quotation marks around
a sentence in order to show that we are talking about
the sentence itself. More generally, they are not set up to
talk about formulae, sentences, axioms or proofs. These are
terms that we use when we talk about systems from outside
them, rather than terms that are found within systems.
What can we do about this?

The answer lies in the nature of systems of the type that
interest us. These systems may not be any good at talking
about formulae, sentences, axioms or proofs, but they can
be used to talk about numbers, about the properties of
numbers, and about relations between numbers. So we do
two things. First we label all strings of symbols, and all
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sequences of strings of symbols, with numbers. We cover
this in section 8.2. Then we move to a parallel world of
properties of numbers and relations between numbers. This
parallel world can be represented within any system that
we might want to show was incomplete. We cover this in
section 8.3.

Section 8.2 is essential to follow what comes next. Sec-
tion 8.3 on the other hand is an optional extra, given our
informal approach. After explaining the parallel world we
shall revert to talking about formulae, sentences, axioms
and proofs, simply because that makes it easier to see
how the proof of incompleteness works. The fact that the
parallel world really is parallel makes this informal approach
acceptable. But the parallel world is absolutely vital for the
sort of formal treatment of incompleteness that is found in
books that take a mathematical approach.

8.2 Labelling with numbers

We start by giving every string of symbols a number. The
string may be an axiom, a sentence that is not an axiom, a
formula that is not even a sentence, or a string that is not
even a formula.

This number is a label for the string of symbols, just as
a passport number is a label for a person. Government
officials can use a passport number to refer to a person
and to say things about them: “The person with passport
number 44019852 lives at 23 Railway Cuttings, East
Cheam”. Likewise, if a string of symbols has a number,
formulae will be able to talk about it. The number for each
string of symbols is called its Gödel number.
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So suppose that the Gödel number for “Though this be
madness, yet there is method in’t” was 711,456. Then we
could write:

∙ The sentence with Gödel number 711,456 was written
by Shakespeare.

Then we do some more numbering. Every sequence of
strings of symbols gets a Gödel number. This means that
in particular, every sequence of formulae will have a Gödel
number. So every proof will have a Gödel number. This will
allow us to use numbers to say whether there are proofs of
sentences and to identify those proofs.

For example, suppose that the Gödel number of the
sentence “2+2 = 4” was 8,982, and suppose that there was
a proof of this sentence which had Gödel number 172,046.
Then we could write both of the following sentences, and
they would both be correct:

∙ There is a number that is the Gödel number of a proof
of the sentence with Gödel number 8,982.

∙ 172,046 is the Gödel number of a proof of the sentence
with Gödel number 8,982.

(The first one of these two is a roundabout way of saying
that there is a proof of the sentence “2 + 2 = 4”. If there
is a proof, it will have a Gödel number, so there will be a
number that is the Gödel number of a proof. If there is no
proof, there will be no number that is the Gödel number of
a proof.)

The Gödel numbers that we have given so far are ones that
we have made up. In practice, we would need a system that
would let us work out the Gödel number for any string
of symbols or any sequence of strings of symbols. Each
string, and each sequence of strings, would need to get a
different number. Our system would also have to let us take
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any number and work back to the corresponding string or
sequence of strings, or work out that it was not the number
of any string or sequence of strings. There are plenty of
systems to do that, and it does not matter which one is used.
We shall not need to know actual Gödel numbers for any
strings or sequences of strings. We only need to know that
it is safe to assume that Gödel numbers would be available.
We shall therefore continue to make up numbers.

8.3 The parallel world

Gödel’s act of using numbers to label things opened the way
for him to do a lot more. We shall now pause to see how
the act of labelling allowed Gödel to move the discussion
of any given system to a parallel world inside the system,
before we revert to talking about systems from the outside.

If we select a system and then ask questions like “Is this
a formula?” and “Is this a proof of that?” in relation
to that system, we stand outside the system and look at
material that has been written by someone working inside
the system. We are in the world of everyday speech about
the system. With labelling by Gödel numbers in place, we
can move to a parallel world inside the system. In that world
there are parallel questions, and ways to answer them.

Suppose that we are given a string of symbols, and we want
to know whether it is a formula. Think of that as a question
about possession of a property. We ask “Does this string
have the property of being a formula?”.

In the parallel world inside the system, we do not see a
string of symbols. Instead we see a number, the Gödel
number of the string. Suppose the number is 7,560. Then
the parallel question is “Does 7,560 have the formula-
number property?”. The number will have the formula-
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number property if, and only if, the string of symbols with
Gödel number 7,560 is a formula.

We can make this move, and find ourselves in the parallel
world inside the system, because it is possible to define the
formula-number property in purely mathematical terms,
just like the odd-number property that is possessed by 1, 3,
5, 7, 9 and so on, but that is not possessed by 2, 4, 6, 8, 10
and so on.

We could do the same thing for other questions. Instead of
asking “Is this a sentence?”, we could ask “Does 7,560 have
the sentence-number property?”. And instead of asking “Is
this an axiom?”, we could ask “Does 7,560 have the axiom-
number property?”.

Now suppose we are given a sequence of formulae, U, and
the last formula in the sequence is a sentence, V. We want
to know whether sequence U is a proof of sentence V. Think
of that as a question about a relation between U and V. We
ask “Does sequence U bear the proof relation to sentence
V?”. That is a slightly odd way to put the question, but it
will make it easier to see how the question in the parallel
world really is a parallel question. If the wording seems
outlandish, consider that we could easily ask whether Plato
taught Aristotle by asking the question “Does Plato bear
the teacher relation to Aristotle?”. This example brings out
a useful point. There is often nothing in the nature of a
relation to make it exclusive. The fact that Plato bears the
teacher relation to Aristotle does not rule out Aristotle’s
having had other teachers as well. Likewise, even if U is a
proof of V, there might also be other proofs of V.

In the parallel world inside the system we do not see a
sequence of formulae, or a sentence that is the last member
of the sequence. Instead we see two numbers. The first one
is the Gödel number of the sequence U, and the second one
is the Gödel number of the sentence V. Suppose that the
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Gödel number of U is 342,148 and the Gödel number of V
is 7,438. Then the parallel question is “Does 342,148 bear
the proof-number relation to 7,438?”.

We can make this move, and find ourselves in the parallel
world inside the system, because it is possible to define the
proof-number relation in purely mathematical terms, just
like the multiple-of relation that 6 bears to 3 (6 = 2 × 3),
or that 85 bears to 17 (85 = 5× 17), but that 20 does not
bear to 7 (2×7 is less than 20, and 3×7 is greater than 20).
Our parallel question is a question about a mathematical
relation between two numbers, just like the question “Does
342,148 bear the multiple-of relation to 7,438?”.

A lot of work is needed to show that the move to the parallel
world is legitimate. All of following need to be shown:

∙ We can give mathematical definitions of the formula-
number property, the sentence-number property, the
axiom-number property, the proof-number relation
and any other bits and pieces that are needed.

∙ Our definitions do give us proper parallels to facts
about what may be written in systems. A number
must have the formula-number property if, and only
if, it is the Gödel number of a formula. A number must
have the sentence-number property if, and only if, it
is the Gödel number of a sentence. A number must
have the axiom-number property if, and only if, it is
the Gödel number of an axiom. And one number must
bear the proof-number relation to another number if,
and only if, the first number is the Gödel number
of a sequence of formulae that ends with a sentence,
the second number is the Gödel number of that final
sentence, and the sequence of formulae is a proof of
the sentence. The same requirement to give us proper
parallels applies to anything else that is needed.
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∙ Any system that we might want to show suffers
from incompleteness is powerful enough to prove the
answers to questions about properties and relations
of numbers like the questions we have given as
examples of parallel questions, and to do so entirely
within itself. We discussed the question of power in
section 7.3. So long as a system is powerful as defined
in section 7.3.1, it will be powerful enough. And now
that we have taken a glimpse into the parallel world,
we can see that when we said, in section 7.3.2, that a
powerful system could prove the answers to questions
like “Is this a formula?”, “Is this a sentence?”, “Is this
an axiom?” and “Is sequence U a proof of sentence
V?”, what we really meant was that it could prove the
answers to the parallel questions about the properties
and relations of numbers.

Fortunately, all of these things have been shown. So
incompleteness can be demonstrated in a completely formal
and logically watertight way. And that formal proof takes
place within the parallel world.

Since the move into the parallel world is a move from
using non-mathematical language to making calculations,
and since the calculations are all within the scope of the
arithmetic of the numbers 0, 1, 2, 3 and so on, the move is
called arithmetization. Sometimes the longer term “the
arithmetization of syntax” is used to emphasize that it is
formal systems that interest us here, rather than anything
in the world that they might characterize.

Having set out why labelling allows work to take place
within any given system, in the parallel world of numbers,
their properties and their relations, we shall now revert to
talking about the formulae, sentences, axioms and proofs of
a system from outside the system. That will make it easier
to see how we get to incompleteness. If we just want to
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see how the proof of incompleteness works, it is perfectly
acceptable to talk about a system from the outside. And
we do not miss anything about the structure of the proof,
because the parallel world really is parallel. An informal
description of the proof from outside any given system, and
the actual proof in the parallel world within the system,
move in step. We shall however continue to refer to Gödel
numbers. We need to do that in order to see how some
crucial moves in the proof work, and so as to make sure
that our informal description does keep in step with the
actual proof in the parallel world.

9 Getting to G

Now that we have got Gödel numbers in place, we can use
whichever system we are investigating to formulate its G.

9.1 Diagonalization

First, we need to learn a funny procedure that is called
diagonalization. This takes almost-sentences, and turns
them into sentences.

An almost-sentence is a formula that would be a sentence,
except that it has a place which is marked with an 𝑥 where a
number should go. (It may have several places, each marked
with an 𝑥, and then the same number must go into each
place.) It is an almost-sentence because until we put a
number in the place, it does not say anything definite. For
example:

∙ “𝑥 is an even number” is an almost-sentence;

∙ “20 is an even number” is a sentence.
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Although an almost-sentence does not say anything definite,
it is a formula, so it will have a Gödel number.

If we want to diagonalize, we take an almost-sentence and
work out its Gödel number. Then we form a sentence by
putting that number into the place marked 𝑥 (or into all
of the places marked 𝑥, if there are several of them). The
result is the diagonalization of the almost-sentence. It will
be a sentence, because the place (or places) marked 𝑥 will
have been filled in with an actual number.

So suppose that the Gödel number of “𝑥 is an even number”
is 247,398.

Then the diagonalization is “247,398 is an even number”.

9.2 No number of a proof

Now we can write this almost-sentence, which we shall call
F:

∙ Not (There is a number that is the Gödel number of
a proof of the diagonalization of the almost-sentence
with Gödel number 𝑥).

(The almost-sentence will be written within a system. “A
proof” will mean a proof within that system.)

This almost-sentence will have its own Gödel number.
Suppose that it is 123,456. (Yet again, we are just making
up a number. It does not matter what the number is.)

Plug that number in to create this sentence, which will be
our sentence G:

∙ Not (There is a number that is the Gödel number of
a proof of the diagonalization of the almost-sentence
with Gödel number 123,456).
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9.3 We have got to G

Now look closely at the sentence G that we have just given,
and at how we got to it. We can put together the following
argument.

1. We got to G by plugging F’s Gödel number into F.
This means that G is the diagonalization of F.

2. G claims that there is no number that is the Gödel
number of a proof of the diagonalization of a certain
almost-sentence.

3. If there were a proof, it would have a Gödel number.

4. So claiming that there is no Gödel number, amounts
to claiming that there is no proof.

5. The almost-sentence in question is the one with Gödel
number 123,456.

6. That almost-sentence is F.

7. So G claims that there is no proof of the diagonaliza-
tion of F.

8. But G is the diagonalization of F.

9. So G claims that there is no proof of itself.

The last line of this argument is what we really need. A
sentence that tells us it has no proof of itself will let us get
to incompleteness.
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10 Getting from G to

incompleteness

Now we have seen how to get to our G, we can move on
from it to show that if the system meets the conditions we
have laid down:

∙ there is no proof of G within the system; and

∙ there is no proof of Not(G) within the system.

Then we shall have established incompleteness, for systems
that meet the conditions. The theorem says that in any
system in which the conditions are met, there is at least
one sentence with no proof of itself or of its negation. So if
we can give an example of a sentence with no proof of itself
or of its negation, we shall have established the theorem.

10.1 What we still have to do

We might think that having G would be enough. After all,
it tells us that it does not have a proof. But in fact, there
is more work to do. It is all very well for G to tell us that
it has no proof, but what if it is mistaken? It might have
a proof, even though it claims not to have one. And what
about Not(G)? We have not yet done anything to show that
it has no proof.

So we still need to show that if the system is consistent,
and the system also meets the other conditions, G has no
proof and Not(G) has no proof. We shall now do this, in
three stages. We shall first show two routes to inconsistency.
Then we shall bring everything together, so as to finish our
proof of the first incompleteness theorem.
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10.2 Proving the first incompleteness
theorem

10.2.1 If G has a proof, the system is inconsistent

Let us go back to our sentence G. Remember that it is the
diagonalization of the almost-sentence we called F, and that
F’s Gödel number is 123,456.

G is:

∙ Not (There is a number that is the Gödel number of
a proof of the diagonalization of the almost-sentence
with Gödel number 123,456).

Now suppose that there is a proof of G. It will have a Gödel
number.

So there will be a number that is the Gödel number of a
proof of G. And the system will itself be able to prove that
this number is the Gödel number of a proof of G, because
the system is powerful enough to prove answers to questions
of the form “Is sequence U a proof of sentence V?”. We
noted this point about power in section 7.3.2.

The system will therefore be able to prove that there exists
a number that is the Gödel number of a proof of G. (Going
from a particular Gödel number to the general claim that
some such number exists is a very easy step, which any
powerful system can take. If we have found a particular
unicorn, we have automatically shown that at least one
unicorn exists.)

But G is the diagonalization of the almost-sentence with
Gödel number 123,456.
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So the system will be able to prove this sentence, which we
may call H:

∙ There is a number that is the Gödel number of a
proof of the diagonalization of the almost-sentence
with Gödel number 123,456.

Now we have what we want. G and H contradict each other,
because G is Not(H). But we assumed that we could prove
G. And we have just proved H. So on our assumption, the
system can prove both a sentence, H, and its negation, G.
So if there is a proof of G, the system is inconsistent.

10.2.2 If Not(G) has a proof, the system is
inconsistent

We can now see what happens if we suppose that Not(G)
has a proof.

We first remark that if a sentence starts with a “Not”, and
we put another “Not” on the front of the sentence, the two
“Not”s cancel each other out. “Not (It is daytime)” tells us
that it is nighttime. “Not (Not (It is daytime))” reverses
the claim that it is nighttime. So it is daytime after all.

G starts with a “Not”, so when we write Not(G), we write
something with two “Not”s on the front. We get this:

∙ Not (Not (There is a number that is the Gödel
number of a proof of the diagonalization of the almost-
sentence with Gödel number 123,456)).

The two “Not”s cancel each other out. So Not(G) is simply
this sentence, the sentence H that we have just met:

∙ There is a number that is the Gödel number of a
proof of the diagonalization of the almost-sentence
with Gödel number 123,456.
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Now suppose that there is a proof of Not(G), that is, a proof
of H.

Once we have stripped off the two “Not”s at the start of
Not(G), to create H, we can see clearly what it says. It says
that there is a number that is the Gödel number of a proof
of the diagonalization of our old friend F, from section 9.2.

But the diagonalization of F is G. So there will be a number
that is the Gödel number of a proof of G. We have no idea
what this number might be, but there will be one. And as
before, the power of the system means that if there is any
such number, the system will itself be able to prove that
some such number exists.

On the other hand, if there is a proof of Not(G), and the
system is consistent, there cannot also be a proof of G. So
each number must fail to be the Gödel number of a proof
of G. And again, the power of the system means that it will
be able to prove, for each number in turn, that it is not the
Gödel number of a proof of G.

Putting these last two paragraphs together, we see that
some number is the Gödel number of a proof of G, while
at the same time, each number must fail to be the Gödel
number of a proof of G. And the power of the system means
that it will be able to arrive at these two contradictory
results within itself.
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This means that the system would contain a contradiction.
So if there is a proof of Not(G), the system is inconsistent.3

10.2.3 The proof

First, take it that whatever system we are considering meets
the conditions of allowing the identification of formulae,
sentences, axioms and proofs, and of being powerful. If it
fails these conditions, there is nothing to prove, because the
theorem only tells us that if all of the conditions are met,
then the system is incomplete. The theorem says nothing
about systems that fail any of the conditions.

What we shall not assume yet, is that the system meets
the condition of consistency. Maybe it does, but we want
to explore the relationship between that condition and
incompleteness.

Assume that G has a proof in the system. On this
assumption, the system would be inconsistent. We showed
how the inconsistency would arise in section 10.2.1.

Now assume that Not(G) has a proof in the system. On this
assumption, the system would be inconsistent.4 We showed
how the inconsistency would arise in section 10.2.2.

3 To be precise, we only show that the system would be 𝜔-
inconsistent, as discussed in section 7.1.1. We do not quite show that
the system would be inconsistent. (Remember that a system can be
𝜔-inconsistent while still being consistent, although a system can also
be both 𝜔-inconsistent and inconsistent.)
The way we show that the system would be 𝜔-inconsistent is as

follows. If we assume that there is a proof of Not(G), there must
be some number or other that has the property of being the Gödel
number of a proof of G. But each number individually must lack the
property of being the Gödel number of a proof of G.

4 Again, to be precise, it would be 𝜔-inconsistent.

49



So if there is a proof of G, or a proof of Not(G), the system
cannot be consistent, and the system fails the conditions.
But there must be a proof of one or other of G and Not(G),
in order to give completeness.

Now look at what we have just shown the other way round.
Completeness implies inconsistency. So consistency requires
incompleteness, so long as the system meets the other
conditions. We have proved the theorem.5

11 The second incompleteness

theorem

11.1 The advantages of consistency

We saw in section 7.1 that consistency is a very good
property for a system to have. If a system is inconsistent,
it will allow us to prove any sentence that it allows us to
write, including “2+2 = 5” and all sorts of other nonsense.
So an inconsistent system is useless.

Recall that a system is consistent so long as there is no
sentence S, such that the system can generate a proof of
S and a proof of Not(S). If there is just one sentence like
that, we have inconsistency.

5 Again, to be precise, we have only shown that 𝜔-consistency
requires incompleteness. But as mentioned in section 7.1.1, there is
another route to the theorem which shows that consistency itself,
along with satisfaction of the other conditions, implies incompleteness.
Just to tie up one loose end, if a system is 𝜔-consistent, it is also

consistent. So if we take the route we have taken here, and assume
𝜔-consistency to show that there cannot be a proof of Not(G), that
same assumption implies that the system is also consistent. We can
use that implied assumption of consistency to show that there is no
proof of G either.

50



Since consistency is such a good property for a system to
have, it would be reassuring if we could prove that a system
we wanted to use was consistent. We might think we could
do this by identifying all the sentences it could prove and
checking that there was no sentence, such that the system
could prove both the sentence and its negation. But there
are plenty of systems that can prove infinite numbers of
different sentences. If we tried to check all the sentences
that such a system could prove, we would never finish the
job. We must look for a different style of proof, one that is
based on the general properties of a system. But we should
not expect to get everything we might want. The second
incompleteness theorem tells us that many systems are not
able to prove their own consistency.

11.2 What the second theorem says

The second theorem says the following.

Take a system that meets all of the conditions we noted for
the first theorem, and explained in section 7, as follows:

∙ The system is consistent.

∙ We can identify formulae, sentences, axioms and
proofs.

∙ The system is powerful. (In order to establish the
second theorem, the system actually needs to be a
little bit more powerful than is necessary to establish
the first theorem. We cover this point in section 11.3.)

Then it is not possible to give, within the system, a proof
that the system is consistent.
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11.3 Getting to the second theorem

Note that just like the first theorem, the second theorem
as a whole applies to all systems. If a system fails any of
the conditions, the second theorem says nothing about that
system’s ability to prove its own consistency. If, on the other
hand, a system meets the conditions, it follows that it is not
possible to formulate, within the system, a proof of its own
consistency.

So we do not need to show anything for systems that fail
one or more of the conditions. We only need to show that
it is not possible to formulate a proof of consistency, on the
assumption that a system meets the conditions.

Just as with our treatment of the first theorem in
section 10.2.3, we shall assume that whatever system
we are considering meets the conditions of allowing the
identification of formulae, sentences, axioms and proofs, and
of being powerful. But this time, we shall also assume that
the system meets the condition of consistency, because that
is what we wonder whether the system could be used to
prove.

The first step is to establish that systems can express their
own consistency. It would be rather boring to show that
the reason we could not formulate a proof of a system’s
consistency within the system was that there was no
sentence within the system that could express the system’s
consistency.
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Fortunately, this is not a problem. Pick any one sentence
that the system can prove. An axiom would do, because
each axiom has a one-line proof, with the axiom being
written on the line, but any other provable sentence would
do just as well. Call the chosen sentence P, and form its
negation, Not(P). An inconsistent system could also prove
Not(P), because an inconsistent system can be used to
prove any sentence that it allows us to write. A consistent
system could not prove Not(P), because then it would
be able to prove both P and Not(P), and that would be
a contradiction. Suppose that Not(P) has Gödel number
9,876. Then we can express consistency with the following
sentence, which we shall call C:

∙ Not (There is a number that is the Gödel number of
a proof of the sentence with Gödel number 9,876).

The next step is to go back to our sentence G for the relevant
system, which is as follows:

∙ Not (There is a number that is the Gödel number of
a proof of the diagonalization of the almost-sentence
with Gödel number 123,456).

We recall that this sentence, G, asserts that there is no
Gödel number of a proof of G itself. And we saw in
section 10.2.1 that if the system is consistent, there is indeed
no Gödel number of a proof of G.

But the claim that there is no Gödel number of a proof of
G is what G itself says.

So consistency implies G.
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Now suppose that the system could be used to prove its
own consistency. Then since consistency implies G, a proof
of consistency given within the system could be used to
prove G within the system.6

But the first theorem has told us that if the system really
is consistent, it is impossible to use the system to prove G.

So if the system is consistent, it cannot be used to prove its
own consistency.

We have arrived at the second incompleteness theorem.

We may add that even if a system could be used to prove
its own consistency, that would not in itself give us much
reassurance, because an inconsistent system could prove
anything, including the false claim that it was consistent.
Having said that, this does not make the second theorem
uninteresting. The second theorem establishes a limit on
the power of consistent systems which meet the other
conditions. And if we were worried that a system might
be inconsistent, but we had not found any contradictions,
or positive evidence that contradictions existed, we might
reasonably suppose that the system was consistent. In that
case, the second theorem would tell us not to worry that we
could not use the system to prove its own consistency.

6 To be precise, a proof of consistency within the system could be
used to prove G within the system, so long as we could also show two
things within the system, rather than by talking about the system
from outside it.
The first thing to show would be that our sentence C, which

represents consistency, implied our sentence G. The second thing to
show would be that there would be inconsistency if it were possible
to prove G within the system. Fortunately these two things can be
shown within systems, but demonstrating this would require getting
quite mathematical.
We should also note that the requirement to be able to show these

things within the system means that systems do need a bit more power
in order for us to show that they cannot prove their own consistency,
than they need in order for us to show that they are incomplete.
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11.4 Could one system prove another’s
consistency?

The second theorem shows that a system which meets the
conditions cannot prove its own consistency. But we do not
have to trap ourselves within a single system. Indeed, we
have spent much of this paper talking about systems from
the outside. So could we stand outside a system, and use
some other system to prove the first system’s consistency?
The prospects are not bright.

11.4.1 Weaker and stronger systems

We shall find it useful to have the notions of weaker and
stronger systems. One system is stronger than another if the
stronger one can prove all of the sentences that the weaker
one can prove, and some extra sentences. If one system is
stronger than another, the second system is weaker than
the first.

One system may be stronger than another because it has all
of the axioms of the weaker system, plus some extra axioms.
More axioms mean more ways to start proofs.

Note that the stronger system must be able to prove all
of the sentences that the weaker system can prove. If one
system can prove 99 per cent of the sentences that a second
system can prove, plus twice as many other sentences again,
the missing 1 per cent means that the first system is not
stronger than the second one, and the second one is not
weaker than the first one. Instead, we say the the first
system is weaker than the second system in some ways,
and stronger in others. It is weaker in the ways that give
rise to the missing 1 per cent, and stronger in the ways that
give rise to the extra twice as many sentences again.
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Suppose that we are interested in proving the consistency
of a particular system, which we shall call Oursystem.

We might try to use a weaker system, which we shall call
Weaksystem.

We might try to use a stronger system, which we shall call
Strongsystem.

Finally, we might try to use a system that was weaker than
Oursystem in some respects, and stronger than Oursystem
in other respects.

11.4.2 A weaker system

Suppose that Weaksystem could prove the consistency of
Oursystem. Then Oursystem would be able to replicate
the proof within itself, because it could do everything
that Weaksystem could do, and more. So Oursystem could
itself prove its own consistency. And as we have just seen,
that would not be possible unless the system was actually
inconsistent (or failed one of the other conditions, but we
assume that we would have checked that it passed those
conditions).

11.4.3 A stronger system

Now suppose that Strongsystem could prove the consistency
of Oursystem. This would be perfectly possible. After all,
Strongsystem can do more things than Oursystem can do.

But then, what about the consistency of Strongsystem? As
we strengthen a system we give it power to prove more
sentences, without its losing its power to prove any of the
sentences that it could prove before being strengthened. So
our fears about possible inconsistency would not reduce,
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and they might increase. The more that a system can
prove, the greater should be our fear that there would be
a sentence S, such that the system could prove both S and
Not(S). So if we could not be confident that Oursystem
was consistent, we certainly could not be confident that
Strongsystem was consistent. And if Strongsystem were
inconsistent, any proof that it gave of the consistency of
Oursystem would be worthless, because an inconsistent
system can prove anything that it allows us to write.

Moreover, if Oursystem were consistent, we could not use
Oursystem to prove the consistency of Strongsystem. If
Strongsystem were consistent, that would mean that there
was no sentence S, such that Strongsystem could prove
both S and Not(S). But then, Oursystem could not have
such a dangerous S either, because it could prove less than
Strongsystem. So if Oursystem could prove the consistency
of Strongsystem, it could prove its own consistency, and
we already know that this would not be possible unless
Oursystem were inconsistent.

11.4.4 A system that is neither weaker nor
stronger

We might try to prove the consistency of Oursystem by
using a system that was neither straightforwardly weaker
than Oursystem, nor straightforwardly stronger. It could
be weaker in some respects, and stronger in others. Indeed,
there are approaches like this. But while they give some
reassurance by narrowing the range of possible worries,
they do not give proofs that put the consistency of systems
beyond doubt.
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11.5 Gaining reassurance from general
remarks

One last option would be to do without a proof of consist-
ency and make do with some general remarks, outside any
formal system, which would at least be reassuring.

We can do something here. There is no specific reason
to fear that standard systems are inconsistent, only a
general worry that they might be. Moreover, people have
established a great many elaborate mathematical results
using standard systems, and they have not so far uncovered
contradictions. There are also arguments which rely on
the fact that simple proofs look perfectly safe, and that
complicated proofs depend on simpler ones in ways that
should not lead us to worry about things starting to go
wrong as we progress from the simple to the complicated.

These considerations indicate that we should not be overly
concerned at the implications of the second incompleteness
theorem. But we should note what it says. Like the first
theorem, it reminds us that some powerful and useful
systems of logic cannot do everything that we might hope
they could do.
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12 The significance of the two

theorems

The significance of Gödel’s incompleteness theorems is still
debated, over 80 years after their first publication. We can
however say something about each of three topics: projects
to use a single set of axioms to provide an undoubtedly
secure foundation for all those parts of mathematics that
can be put in terms of the behaviour of the numbers 0, 1,
2, 3, and so on; the relationship between provability and
truth; and misinterpretations of the theorems.

12.1 Secure foundations for everything

In section 2.2, we outlined Hilbert’s programme. He wanted
to find a set of axioms that would provide foundations
for the whole of mathematics. He also wanted us to have
complete confidence that the foundations were firm. Now we
can consider the impact of Gödel’s incompleteness theorems
on Hilbert’s programme.

There is some dispute about the precise contents and
implications of Hilbert’s programme, and therefore about
the precise impact of Gödel’s work on that programme.
But Hilbert certainly wanted a proof of the consistency
of a system, where that system would suffice for the
whole of mathematics. In addition, some authors argue
that his programme would require an absence of negation
incompleteness. Regardless of exactly what would fulfil
Hilbert’s programme, these are both understandable am-
bitions. Where does Gödel’s work leave them?

In order to understand the impact of Gödel’s incomplete-
ness theorems, we shall concentrate on the mathematics
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that is based on the behaviour of the numbers 0, 1, 2, 3,
and so on.

This part of mathematics goes far beyond everyday sums.
A huge body of sophisticated mathematics, including
important results about prime numbers and about which
equations have solutions in the numbers 0, 1, 2, 3, and so
on, has been built upon the same foundation as the one that
underpins our everyday sums. We shall call this body of
mathematics “arithmetic”, its traditional name in this sort
of discussion. (There is no implication that we are limited
to the arithmetic that everyone learns at school; and there
is an alternative name, “number theory”.)

If we were only concerned with everyday sums, we would
have no worries at all. We know that the system works,
that every sum has precisely one right answer, and that
no contradictions arise. If something goes wrong, it is the
fault of the person or the computer making the calculations,
not of the mathematics. But can we feel so satisfied, and
so secure, about the much more sophisticated results of
arithmetic in the wider sense that we have just identified?

In order to see the limits that Gödel’s theorems impose, we
must ask two questions. First, can we find foundations for
the whole of arithmetic? And second, can we have complete
confidence in the foundations?

12.1.1 Foundations for the whole of arithmetic

One message of the first incompleteness theorem is that
we cannot get every question answered by any one system
of axioms. There will always be some incompleteness, so
long as the system meets the conditions that we laid down
in section 7, the conditions of consistency, identifiability of
formulae, sentences, axioms and proofs, and power. And we
would really like any system to meet those conditions.
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It is no surprise that a given system may be inadequate to
our needs. Indeed, mathematicians have identified results
that can be expressed in the system that we ordinarily use
for the arithmetic of the numbers 0, 1, 2, 3, and so on, but
that can only be proved by moving up to more powerful
systems.7

The first incompleteness theorem tells us that moving up
to a more powerful system is never going to be a complete
cure. Increasing a system’s power will not allow us to reach
a system in which there is no incompleteness left, so long
as we insist on still meeting the conditions on the system
that we have laid down. There will always be a G. We have
incurable incompleteness.

This does not mean that we should worry. We can do
enormous amounts with the foundations for arithmetic
that we have. There are also systems for other parts
of mathematics which do not suffer from incompleteness,
because they fail the condition of being powerful, but which
are still very useful in areas other than arithmetic. As an
example, systems for geometry can be like that.

12.1.2 Complete confidence in foundations

The second incompleteness theorem shows that we cannot
use a system which meets our conditions to prove its
own consistency. And as we noted in section 11.4, there

7 One of the most easily comprehensible results is Goodstein’s
theorem, which concerns sequences of numbers that are generated
in a particular way. These sequences start by shooting off to huge
numbers, but the theorem states that if we keep on generating new
members of a sequence in the prescribed way, we shall eventually come
down to zero. So this is an example of incompleteness that is not an
artificially constructed sentence like G. It is, however, an example of
curable incompleteness, because Goodstein’s theorem can be proved
in a stronger system.
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is no obvious way to get complete reassurance from
other systems. So does the second theorem tell us that
whatever foundations we establish, we can never have
complete confidence in their firmness? Should the fear of
inconsistency haunt us?

What the second theorem tells us is that we should not
expect to obtain complete confidence from within systems
of arithmetic. But this does not mean that we cannot obtain
confidence from other sources. As noted in section 11.5,
we can make general remarks that should help us to sleep
at night. But there are also some more precise results.
In particular, in 1936, Gerhard Gentzen (1909 – 1945)
established the consistency of the standard system of
arithmetic, by using methods that lie outside the arithmetic
of finite numbers. This is an example of the use of a system
that is weaker in some respects and stronger in others, as
mentioned in section 11.4.4. Nervous people would say that
this just transfers our worry to the other system that is
used to prove consistency. Confident people would say that
if we find support for some parts of mathematics in other
parts of mathematics, and we never find a specific reason
to worry about any of the parts, we should have confidence
in all of the parts.

12.2 Provability and truth

We have so far avoided saying that sentences are true. We
have not even said that simple sentences like “8 + 7 = 15”
are true. But in everyday speech, it is normal to claim that
mathematical statements are true. It is now time to say
something about the relationship between provability and
truth. This will tell us something about the significance of
the first incompleteness theorem.
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12.2.1 Systems and their interpretation

When we set up a system, we create a game that is played
with symbols. Certain strings of symbols, the formulae, can
be written. Some of those formulae are called sentences.
And certain sequences of formulae are called proofs. But
we could play the game without thinking about what it was
supposed to achieve. We could just move symbols around,
according to the rules, without any intention to say things
about the world outside the game, the world in which there
are numbers that we use to count things and that have
certain properties. If we simply think in terms of a game,
we should not really speak of numbers at all. Rather, we
should speak of numerals, meaning ink marks on a page
like “0”, “1”, “2”, “3”, and so on.

We do not, however, create systems merely in order to play
games with symbols. We have created the standard system
that we use for numbers in order to represent the numbers
which obey rules that make those numbers remarkably
useful in coping with the world.

Looked at another way, the system that we standardly use
for numbers can be interpreted as being about the numbers
0, 1, 2, 3, and so on, and if we interpret it like that, we do not
run into any practical difficulties. The evidence that we have
got our system right is that when we see what we can prove,
we find that we can prove sentences which, interpreted as
being about those numbers, make claims that we find to
be true – for example, the claim that when Winnie the
Pooh puts eight pots of honey on a table, and then another
seven pots, he has fifteen pots. If we had found that when
we interpreted our chosen system in this way, we had been
able to prove a sentence which would have led us to expect
only fourteen pots of honey, we would have changed our
system. A system which got things wrong like that would
not be at all useful.
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It may seem odd to talk about interpreting a system.
We grasp the meaning of the sentence “8 + 7 = 15”
immediately, without any feeling that there is a stage of
interpreting it, like the stage of interpreting a sentence in
some language that we are just beginning to learn. It would
also be odd to talk about interpretation if each system had
only one possible interpretation. But in fact many systems,
including the system that we use for the numbers 0, 1, 2,
3, and so on, do have alternative interpretations – although
the alternatives can be quite weird, and in everyday life
we can safely ignore them. So it is worth identifying the
interpretation of a system as a separate step.8

The important point for us is that provability and truth are
separate things. We can generate proofs by playing games
with symbols. But we need to interpret sentences, if we want
to see whether they state truths about some subject matter
or other.

12.2.2 The status of G

Now we can turn to what this tells us about the first
incompleteness theorem. It is commonly said that G is true
but unprovable. Should we say that?

8 Not just any random interpretation of symbols is allowed. An
interpretation has to fit the axioms. Take for example one of the
axioms in the system that we use for the numbers 0, 1, 2, 3, and so on,
the axiom “0 is not the successor of any number”. An interpretation
must respect this axiom. So we cannot interpret the system as
applying to all of the integers, positive, zero and negative, because
then every number would be the successor of a number. There would
be no start of the chain of numbers, so there would be no number that
we could call “0”, in a way that would comply with the axiom. But
even though interpretations must respect the axioms, there are some
rather strange-looking alternative interpretations of the system that
we use for the numbers 0, 1, 2, 3, and so on.
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We shall consider provability first. This is provability within
a system. There is no such thing as provability in absolute
terms, because we give proofs within systems and we must
follow the rules of whichever system we use.

So take a system that meets the conditions of identifiability
of formulae, sentences, axioms and proofs, and of power.
Consider its sentence G. The first incompleteness theorem
does not entitle us to say whether G is provable within the
system. What it does entitle us to say is that if the system
is consistent, then G is not provable within the system, but
if it is inconsistent, then G is provable within the system
(along with every other sentence that we could write within
the system).

Now suppose that we look at the system from the outside.
We also note that if the system is consistent, there is
indeed no number that is the Gödel number of a proof of
G within the system, and that this is what G says. So we
can say that if G is not provable within the system, it says
something true. But we must remember the condition, “if
G is not provable within the system”, and the important
words “within the system”. It would be too sweeping to say
that G said something true while being unprovable, without
adding these qualifications.

12.2.3 First and second order systems

There is one more refinement to the picture painted here.
Not only is provability relative to a system. Truth is also
relative to interpretation. A sentence may say something
true if interpreted in one way, but something false if
interpreted in another way. We have already hinted at this,
but it is worth reflecting on the point.

Logicians refer to interpretations of systems as models.
A model of a system must respect the system’s axioms.
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But as we have already noted, there can be more than
one way to respect a system’s axioms. So a sentence might
say something true in one model, and something false in
another.

Whether there is more than one model, allowing for this
possibility, depends on the extent to which the system
allows generalization. We noted in section 7.3.2 that it is
very useful to be able to generalize about all numbers.
Systems that can be interpreted as allowing generalization
over objects, but not over sets of objects, are called first-
order systems. Such systems can easily have more than
one model. Systems that can be interpreted as allowing
generalization not only over objects, but also over sets of
objects (for example, generalization over sets of numbers),
are called second-order systems. Such systems can easily
have just one model.

When a system can have more than one model, incomplete-
ness is unsurprising. A sentence might be true in one model
and false in another. Then there had better not be a proof
of the sentence (because it would be false in the second
model), and there had better not be a proof of its negation
either (because that would be false in the first model).

In second-order systems, the problem is a bit different.
There may be only one model, but there is no completely
respectable notion of provability that can make provable all
of the sentences which are true in the model. Truth outruns
provability.

To return to first-order systems, where does this leave a
claim that G says something true? It is a useful reminder
that we must ask whether such a claim is a claim that there
is a model of a system in which G for some system is true,
or whether it is an informal claim that G says something
true, made without reference to models of systems.
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12.3 Misinterpretations of the theorems

Gödel’s incompleteness theorems are remarkably open to
misinterpretation. They are thought to imply conclusions
that do not in fact follow. (It is a separate question whether
the conclusions are correct. The point here is that they do
not gain the support that they would gain, if they were
consequences of Gödel’s theorems.)

Some mistaken claims to the effect that certain conclusions
follow appear to result from a little understandable care-
lessness in interpreting the theorems. Others can only be
explained as results of cluelessness. There are degrees of
misunderstanding between these extremes. We shall move
along the scale, from understandable claims to bizarre ones.

The first mistaken claim to note lies within mathematics
itself. It is the claim that there are some sentences such
that neither they, nor their negations, can be proved in
any system at all. This ignores the possibility of moving up
from a system in which some sentence is not provable, to
another one in which it is provable. “In any system, there
is a sentence such that neither it nor its negation can be
proved”, is not the same as “There is a sentence, such that
neither it nor its negation can be proved in any system”. If
the sentence is the G of some system, call it System 1, then
we move up to System 2, we need to be explicit that the G
in question says that it is not provable in System 1. But we
can do that.9

A related mistaken claim is that the consistency of a
system can never be proved. It may not be possible to

9 We do not do it by reproducing G symbol for symbol and then
inserting “(in System 1)”. Instead, we prove in System 2 that if System
1 meets the conditions, there is no number that is the Gödel number
of a proof in System 1 of the diagonalization of the almost-sentence
with Gödel number 123,456. (Remember that we are using 123,456 as
a made-up Gödel number for the almost-sentence F.)
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prove the consistency of a consistent system within that
system, but we might be able to prove it within another
system – although we would then have to worry about the
consistency of the second system.

Moving on to physics, one mistaken claim is that the
theorems show that we could never work out a set of
physical laws that would completely govern the Universe.
The idea is that for any given set of laws, there might be
something going on that was not captured by those laws.
The mistake here is to assume that the physical Universe is
a formal system of the type that we have defined, and that
it meets the conditions we laid down for incompleteness to
follow. Maybe the physical Universe is like that, but we
would have to demonstrate that supposed fact. We should
not just assume it.

Turning to our minds, one mistaken claim is that the
theorems show that we can prove mathematical results
which computers could not prove. People who think this
are likely to start from the correct observation that human
beings can have insights which computers do not yet have.
But insight is not the same thing as proof. Proof takes place
within a formal system, and there is no reason to suppose
that our brains are better at handling formal systems than
computers will be, once developments which are already
reasonably foreseeable have taken place. There is not even
any reason to suppose that we shall always stay ahead of
computers in powers of creative insight.

Finally, there are claims that are based on the massive
error of supposing that the theorems are about the world,
our knowledge and our processes of thought in general,
rather than their being about formal systems as defined.
People claim that the theorems show that the world is
indeterministic, that we have free will, that any knowledge
we may claim to have is relative to a language which
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must itself be interrogated, that no legal code can ever be
comprehensive, and that there is room for a god to have
played a role in the origin of the Universe.

One point should be conceded to some of those who appear
to misunderstand Gödel’s work. Some people only use his
work as a source of inspiration, analogy or metaphor. There
is nothing wrong with making that kind of use of the
incompleteness theorems, just as there is nothing wrong
with allowing works of art to trigger philosophical ideas.
But such use gives no demonstration at all of the worth
of the ideas that result. Ideas do not derive any support
from merely psychological connections to mathematical
theorems. Those who make such connections prove nothing
by making them. Gödel, on the other hand, proved a very
great deal.

13 Further reading

We have avoided mathematical symbols and proofs. But if
you want to get to grips with Gödel’s work in any detail,
you will need to read mathematical formulations of it. Some
of the suggestions here are distinctly mathematical.

Books written in this mathematical way conduct the
argument within the logical systems under investigation,
rather than by talking about systems from the outside. That
is, they use the method of arithmetization that we discussed
in section 8.3.

Different authors take different routes to the theorems.
Some authors like to emphasize symbols, regarded as mere
marks on the page with no meanings. Others prefer to
interpret the symbols as referring to numbers, regarded as
objects that exist outside systems. If an author seems to
be doing something different from what we have done here,
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the most likely reason is that he or she is using a different
route. The different routes are equally good, although they
do tend to bring out some different points.

13.1 Internet resources

Panu Raatikainen has written an article for the Stanford
Encyclopedia of Philosophy at:

http://plato.stanford.edu/entries/goedel-incompleteness/

Peter Smith has supplied some free notes at:

http://www.logicmatters.net/igt/godel-without-tears/

13.2 Books

There is an outstandingly clear and thorough treatment
of Gödel’s theorems, and of several related topics, in
Peter Smith, An Introduction to Gödel’s Theorems (second
edition, Cambridge, Cambridge University Press, 2013). Be
sure to get the second edition, published in 2013, not the
first edition, published in 2007, because the author made
significant improvements in the second edition.

Supporting materials for Peter Smith’s book can be found
at:

http://www.logicmatters.net/igt/

Another treatment of the theorems, which is rather different
in style, and which includes chapters on philosophical
questions that are more or less closely linked to the
theorems, is Francesco Berto, There’s Something About
Gödel (Oxford, Blackwell, 2009).
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A very good book on the significance of the theorems is
Torkel Franzén, Gödel’s Theorem: An Incomplete Guide to
Its Use and Abuse (Wellesley, MA, A K Peters, 2005). The
title uses the singular, “theorem”, but the author meant
this to cover both theorems.

There is a detailed treatment of techniques that generate
the sentence G for a system, and of many other topics, more
or less related to those techniques, in Raymond Smullyan,
Diagonalization and Self-Reference (Oxford, Clarendon
Press, 1994). This book is now printed on demand, and
it is expensive, but it may be available secondhand or in
libraries.

There is a chapter on Gödel in Robert S. Wolf, A Tour
Through Mathematical Logic (Washington, DC, Mathemat-
ical Association of America, 2005). This book gives a good
survey of the whole field of mathematical logic.

14 List of changes

14.1 The current version: version 4.3

This is version 4.3 of the paper, dated 2 October 2016. The
one textual change from version 4.2 is that the author’s
contact details have been changed to refer to a contact page
on his website.

14.2 Previous versions

14.2.1 Version 1

Version 1 was dated 28 May 2014.
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14.2.2 Version 2

Version 2 was dated 24 December 2014. Changes from
version 1 were as follows.

The style of links was changed, so that they appeared as
text in blue rather than as text enclosed in red boxes.

More pagebreaks were included, so as not to end pages just
after the starts of sections or in other inconvenient places.
There were therefore more blank spaces at the ends of pages.

In section 3.2, the proof that the Earth is round was
replaced by a proof that smoking is not allowed in the dining
room of a restaurant. (Peter Smith kindly pointed out that
the old proof, which relied on photographs showing that the
Earth was round, was either largely redundant or invalid,
depending on the sense of “show”.)

In section 10.2.2, footnote 3 was amended so as to be better
aligned with the main text. It was changed to discuss 𝜔-
inconsistency instead of 𝜔-consistency.

The text in section 12.2 was changed to align the example
of pots of honey with the start of chapter 3 of The House
at Pooh Corner. The relevant sum became 8 + 7 = 15.

In section 12.2, the end of the first paragraph was amended
to make it clear that the material in that section tells us
about the significance of the first incompleteness theorem,
rather than of both theorems.

In section 12.2, footnote 8 was re-worded slightly so as to
keep it on one page.

14.2.3 Version 3

Version 3 was dated 4 February 2015. Changes from version
2 were as follows.
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A new section 8.3, on arithmetization, was inserted. There
were related changes to the text of the rest of section 8. The
numbering of later sections was not affected. There were
also minor consequential changes to the text of section 3.2.

A note on arithmetization was added to section 13.

The way to state consistency in section 11.3 was amended
to allow any provable sentence to be used.

There were several minor changes to wording throughout
the paper.

14.2.4 Version 4.0

Version 4.0 of the paper was dated 17 November 2015.
Changes from version 3 were as follows.

Section 12.2 was revised and expanded to say something
about models and about second-order systems.

There were some minor textual changes elsewhere.

The layout was changed to reduce the number of characters
per line, for the sake of readability. Page numbers therefore
changed.

14.2.5 Version 4.1

Version 4.1 of the paper was dated 2 February 2016. The
one change from version 4.0 was a re-wording of the last
paragraph of section 11.1.

14.2.6 Version 4.2

Version 4.2 of the paper was dated 16 September 2016.
The one textual change from version 4.1 was that section
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1.2 was amended to refer to a Creative Commons licence.
Pagination also changed slightly, largely in order to keep
some long footnotes on single pages. The usefulness of doing
so was thought to be worth the consequent introduction of
a few large white spaces.

END OF PAPER
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